Chemistry of burning the forest floor during the FROSTFIRE experimental burn , interior Alaska , 1999

نویسندگان

  • J. W. Harden
  • J. C. Neff
  • D. V. Sandberg
  • M. R. Turetsky
  • R. Ottmar
  • G. Gleixner
  • T. L. Fries
  • K. L. Manies
چکیده

[1] Wildfires represent one of the most common disturbances in boreal regions, and have the potential to reduce C, N, and Hg stocks in soils while contributing to atmospheric emissions. Organic soil layers of the forest floor were sampled before and after the FROSTFIRE experimental burn in interior Alaska, and were analyzed for bulk density, major and trace elements, and organic compounds. Concentrations of carbon, nutrients, and several major and trace elements were significantly altered by the burn. Emissions of C, N, and Hg, estimated from chemical mass balance equations using Fe, Al, and Si as stable constituents, indicated that 500 to 900 g C and up to 0 to 4 10 4 g Hg/m were lost from the site. Calculations of nitrogen loss range from 4 to +6 g/m but were highly variable (standard deviation 19), with some samples showing increased N concentrations post-burn potentially from canopy ash. Noncombustible major nutrients such as Ca and K also were inherited from canopy ash. Thermogravimetry indicates a loss of thermally labile C and increase of lignin-like C in char and ash relative to unburned counterparts. Overall, atmospheric impacts of boreal fires include large emissions of C, N and Hg that vary greatly as a function of severe fire weather and its access to deep organic layers rich in C, N, and Hg. In terrestrial systems, burning rearranges the vertical distribution of nutrients in fuels and soils, the proximity of nutrients and permafrost to surface biota, and the chemical composition of soil including its nutrient and organic constituents, all of which impact C cycling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of fire and permafrost on sub-arctic stream chemistry during storms

Permafrost and fire are important regulators of hydrochemistry and landscape structure in the discontinuous permafrost region of interior Alaska. We examined the influence of permafrost and a prescribed burn on concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and other solutes (NO 3 , Ca 2C, KC, Mg2C, NaC) in streams of an experimentally burned watershed and tw...

متن کامل

Spatial heterogeneity of understory vegetation and soil in an Alaskan upland boreal forest fire chronosequence

In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15 cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between und...

متن کامل

Effects of prescribed fires on first-year establishment of white oak (Quercus alba L.) seedlings in the Upper Piedmont of South Carolina, USA

Effects of prescribed fires on the 1-year establishment of white oak seedlings were investigated on the Clemson Experimental Forest, South Carolina, USA. Three stands, each consisting of a burn and a control treatment of about 1 ha in size, were examined in the study. On each burn and control treatment, six to eight dominant white oak trees were randomly selected along the slope and four 2-m ra...

متن کامل

Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska

[1] The impact to the permafrost during and after wildfire was studied using 11 boreal forest fire sites including two controlled burns. Heat transfer by conduction to the permafrost was not significant during fire. Immediately following fire, ground thermal conductivity may increase 10-fold and the surface albedo can decrease by 50% depending on the extent of burning of the surficial organic s...

متن کامل

Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest

In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004